Speed of Excited Random Walks with Long Backward Steps

Author:

Nguyen Tuan-MinhORCID

Abstract

AbstractWe study a model of multi-excited random walk with non-nearest neighbour steps on $$\mathbb {Z}$$ Z , in which the walk can jump from a vertex x to either $$x+1$$ x + 1 or $$x-i$$ x - i with $$i\in \{1,2,\dots ,L\}$$ i { 1 , 2 , , L } , $$L\ge 1$$ L 1 . We first point out the multi-type branching structure of this random walk and then prove a limit theorem for a related multi-type Galton–Watson process with emigration, which is of independent interest. Combining this result and the method introduced by Basdevant and Singh (Probab Theory Relat Fields 141:3–4, 2008), we extend their result (w.r.t. the case $$L=1$$ L = 1 ) to our model. More specifically, we show that in the regime of transience to the right, the walk has positive speed if and only if the expected total drift $$\delta >2$$ δ > 2 . This confirms a special case of a conjecture proposed by Davis and Peterson.

Funder

Monash University

Publisher

Springer Science and Business Media LLC

Subject

Mathematical Physics,Statistical and Nonlinear Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3