Subdiffusion in the Presence of Reactive Boundaries: A Generalized Feynman–Kac Approach

Author:

Kay TobyORCID,Giuggioli LucaORCID

Abstract

AbstractWe derive, through subordination techniques, a generalized Feynman–Kac equation in the form of a time fractional Schrödinger equation. We relate such equation to a functional which we name the subordinated local time. We demonstrate through a stochastic treatment how this generalized Feynman–Kac equation describes subdiffusive processes with reactions. In this interpretation, the subordinated local time represents the number of times a specific spatial point is reached, with the amount of time spent there being immaterial. This distinction provides a practical advance due to the potential long waiting time nature of subdiffusive processes. The subordinated local time is used to formulate a probabilistic understanding of subdiffusion with reactions, leading to the well known radiation boundary condition. We demonstrate the equivalence between the generalized Feynman–Kac equation with a reflecting boundary and the fractional diffusion equation with a radiation boundary. We solve the former and find the first-reaction probability density in analytic form in the time domain, in terms of the Wright function. We are also able to find the survival probability and subordinated local time density analytically. These results are validated by stochastic simulations that use the subordinated local time description of subdiffusion in the presence of reactions.

Funder

Biotechnology and Biological Sciences Research Council

Publisher

Springer Science and Business Media LLC

Subject

Mathematical Physics,Statistical and Nonlinear Physics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Encounter-based reaction-subdiffusion model I: surface adsorption and the local time propagator;Journal of Physics A: Mathematical and Theoretical;2023-10-06

2. Extreme value statistics and Arcsine laws of Brownian motion in the presence of a permeable barrier;Journal of Physics A: Mathematical and Theoretical;2023-08-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3