Maximal Codimension Collisions and Invariant Measures for Hard Spheres on a Line

Author:

Wilkinson MarkORCID

Abstract

AbstractFor any $$N\ge 3$$ N 3 , we study invariant measures of the dynamics of N hard spheres whose centres are constrained to lie on a line. In particular, we study the invariant submanifold $$\mathcal {M}$$ M of the tangent bundle of the hard sphere billiard table comprising initial data that lead to the simultaneous collision of all N hard spheres. Firstly, we obtain a characterisation of those continuously-differentiable N-body scattering maps which generate a billiard dynamics on $$\mathcal {M}$$ M admitting a canonical weighted Hausdorff measure on $$\mathcal {M}$$ M (that we term the Liouville measure on$$\mathcal {M}$$ M ) as an invariant measure. We do this by deriving a second boundary-value problem for a fully nonlinear PDE that all such scattering maps satisfy by necessity. Secondly, by solving a family of functional equations, we find sufficient conditions on measures which are absolutely continuous with respect to the Hausdorff measure in order that they be invariant for billiard flows that conserve momentum and energy. Finally, we show that the unique momentum- and energy-conserving linearN-body scattering map yields a billiard dynamics which admits the Liouville measure on $$\mathcal {M}$$ M as an invariant measure.

Publisher

Springer Science and Business Media LLC

Reference35 articles.

1. Aleksandr, I., Khinchin, A.: Mathematical Foundations of Statistical Mechanics. Courier Corporation, New York (1949)

2. Alexander, R.K.: The infinite hard-sphere system. PhD Thesis, University of California, Berkeley, (1975)

3. Ambrosio, L., Fusco, N., Pallara, D.: Functions of Bounded Variation and Free Discontinuity Problems. Oxford University Press, Oxford (2000)

4. Ampatzoglou, I.: Higher Order Extensions of the Boltzmann Equation. The University of Texas at Austin, Austin (2020)

5. Ampatzoglou, I., Gamba, I.M., Pavlović, N., Tasković, M.: Global well-posedness of a binary-ternary Boltzmann equation. Ann. Inst. Henri Poincaré C 39, 327–369 (2022)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3