Abstract
AbstractWe construct marked Gibbs point processes in $${\mathbb {R}}^d$$Rd under quite general assumptions. Firstly, we allow for interaction functionals that may be unbounded and whose range is not assumed to be uniformly bounded. Indeed, our typical interaction admits an a.s. finite but random range. Secondly, the random marks—attached to the locations in $${\mathbb {R}}^d$$Rd—belong to a general normed space $${{\mathscr {S}}}$$S. They are not bounded, but their law should admit a super-exponential moment. The approach used here relies on the so-called entropy method and large-deviation tools in order to prove tightness of a family of finite-volume Gibbs point processes. An application to infinite-dimensional interacting diffusions is also presented.
Funder
Deutsche Forschungsgemeinschaft
Publisher
Springer Science and Business Media LLC
Subject
Mathematical Physics,Statistical and Nonlinear Physics
Reference22 articles.
1. Conache, D., Daletskii, A., Kondratiev, Y., Pasurek, T.: Gibbs states of continuum particle systems with unbounded spins: existence and uniqueness. J. Math. Phys. 59(1), 013507 (2018). https://doi.org/10.1063/1.5021464
2. Cramér, H.: Sur un nouveau théorème-limite de la théorie des probabilités. Colloque consacré à la théorie des probabilités. Actual. Sci. Ind. 736, 5–23 (1938)
3. Daletskii, A., Kondratiev, Y., Kozitsky, Y., Pasurek, T.: Gibbs states on random configurations. J. Math. Phys. 55(8), 083513 (2014). https://doi.org/10.1063/1.4891992
4. Camb. Tracts Math;EW Davies,1989
5. Dereudre, D.: The existence of Quermass-interaction processes for nonlocally stable interaction and nonbounded convex grains. Adv. Appl. Probab. 41(03), 664–681 (2009). https://doi.org/10.1017/s0001867800003517
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献