Author:
Bencs Ferenc,Boer David de,Buys Pjotr,Regts Guus
Abstract
AbstractIn this paper we prove that for any integer $$q\ge 5$$
q
≥
5
, the anti-ferromagnetic q-state Potts model on the infinite $$\Delta $$
Δ
-regular tree has a unique Gibbs measure for all edge interaction parameters $$w\in [1-q/\Delta ,1)$$
w
∈
[
1
-
q
/
Δ
,
1
)
, provided $$\Delta $$
Δ
is large enough. This confirms a longstanding folklore conjecture.
Publisher
Springer Science and Business Media LLC
Subject
Mathematical Physics,Statistical and Nonlinear Physics
Reference39 articles.
1. Barvinok, A.: Combinatorics and complexity of partition functions. Algorithms and combinatorics, vol. 30. Springer, Cham (2016)
2. Baxter, R.J.: Critical antiferromagnetic square-lattice Potts model. Proc. Roy. Soc. London Ser. A 383(1784), 43–54 (1982)
3. Baxter, R.J.: $$q$$ colourings of the triangular lattice. J. Phys. A 19(14), 2821–2839 (1986)
4. Bencs, F., Buys, P., Peters, H.: The limit of the zero locus of the independence polynomial for bounded degree graphs. arXiv preprint arXiv:2111.06451, (2021)
5. Borgs, C., Chayes, J., Kahn, J., Lovász, L.: Left and right convergence of graphs with bounded degree. Random Struct. Algorithm. 42(1), 1–28 (2013)