Joint Invariance Principles for Random Walks with Positively and Negatively Reinforced Steps

Author:

Bertenghi MarcoORCID,Rosales-Ortiz Alejandro

Abstract

AbstractGiven a random walk $$(S_n)$$ ( S n ) with typical step distributed according to some fixed law and a fixed parameter $$p \in (0,1)$$ p ( 0 , 1 ) , the associated positively step-reinforced random walk is a discrete-time process which performs at each step, with probability $$1-p$$ 1 - p , the same step as $$(S_n)$$ ( S n ) while with probability p, it repeats one of the steps it performed previously chosen uniformly at random. The negatively step-reinforced random walk follows the same dynamics but when a step is repeated its sign is also changed. In this work, we shall prove functional limit theorems for the triplet of a random walk, coupled with its positive and negative reinforced versions when $$p < 1/2$$ p < 1 / 2 and when the typical step is centred. The limiting process is Gaussian and admits a simple representation in terms of stochastic integrals, $$\begin{aligned} \left( B(t) , \, t^p \int _0^t s^{-p} \mathrm {d}B^r(s) , \, t^{-p} \int _0^t s^{p} \mathrm {d}B^c(s) \right) _{t \in \mathbb {R}^+} \end{aligned}$$ B ( t ) , t p 0 t s - p d B r ( s ) , t - p 0 t s p d B c ( s ) t R + for properly correlated Brownian motions $$B, B^r$$ B , B r , $$B^c$$ B c . The processes in the second and third coordinate are called the noise reinforced Brownian motion (as named in [1]), and the noise counterbalanced Brownian motion of B. Different couplings are also considered, allowing us in some cases to drop the centredness hypothesis and to completely identify for all regimes $$p \in (0,1)$$ p ( 0 , 1 ) the limiting behaviour of step reinforced random walks. Our method exhausts a martingale approach in conjunction with the martingale functional CLT.

Funder

University of Zurich

Publisher

Springer Science and Business Media LLC

Subject

Mathematical Physics,Statistical and Nonlinear Physics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Strong limit theorems for step-reinforced random walks;Stochastic Processes and their Applications;2024-12

2. Strong invariance principle for a counterbalanced random walk;Applied Mathematics-A Journal of Chinese Universities;2024-06

3. Reinforced Galton–Watson processes I: Malthusian exponents;Random Structures & Algorithms;2024-04-22

4. Noise reinforced Lévy processes: Lévy-Itô decomposition and applications;Electronic Journal of Probability;2023-01-01

5. On the local times of noise reinforced Bessel processes;Annales Henri Lebesgue;2022-11-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3