Hypocoercivity and Fast Reaction Limit for Linear Reaction Networks with Kinetic Transport

Author:

Favre GianlucaORCID,Schmeiser ChristianORCID

Abstract

AbstractThe long time behavior of a model for a first order, weakly reversible chemical reaction network is considered, where the movement of the reacting species is described by kinetic transport. The reactions are triggered by collisions with a nonmoving background with constant temperature, determining the post-reactional equilibrium velocity distributions. Species with different particle masses are considered, with a strong separation between two groups of light and heavy particles. As an approximation, the heavy species are modeled as nonmoving. Under the assumption of at least one moving species, long time convergence is proven by hypocoercivity methods for the cases of positions in a flat torus and in whole space. In the former case the result is exponential convergence to a spatially constant equilibrium, and in the latter it is algebraic decay to zero, at the same rate as solutions of parabolic equations. This is no surprise since it is also shown that the macroscopic (or reaction dominated) behavior is governed by the diffusion equation.

Funder

Austrian Science Fund

Publisher

Springer Science and Business Media LLC

Subject

Mathematical Physics,Statistical and Nonlinear Physics

Reference18 articles.

1. Bisi, M., Desvillettes, L.: From reactive Boltzmann equations to reaction-diffusion systems. J. Stat. Phys. 124, 881–912 (2006)

2. Bouin, E., Dolbeault, J., Mischler, S., Mouhot, C., Schmeiser, C.: Hypocoercivity without confinement, arXiv:1708.06180, (2018)

3. Craciun, G.: Toric Differential Inclusions and a Proof of the Global Attractor Conjecture, arXiv:1501.02860, (2015)

4. Daus, E., Jüngel, A., Mouhot, C., Zamponi, N.: Hypocoercivity for a linearized multispecies Boltzmann system. SIAM J. Math. Anal. 48, 538–568 (2016)

5. Desvillettes, L.: Hypocoercivity: the example of linear transport. Contemp. Math. AMS 409, 33 (2006)

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3