Diffusion and Superdiffusion from Hydrodynamic Projections

Author:

Doyon BenjaminORCID

Abstract

AbstractHydrodynamic projections, the projection onto conserved charges representing ballistic propagation of fluid waves, give exact transport results in many-body systems, such as the exact Drude weights. Focussing one one-dimensional systems, I show that this principle can be extended beyond the Euler scale, in particular to the diffusive and superdiffusive scales. By hydrodynamic reduction, Hilbert spaces of observables are constructed that generalise the standard space of conserved densities and describe the finer scales of hydrodynamics. The Green–Kubo formula for the Onsager matrix has a natural expression within the diffusive space. This space is associated with quadratically extensive charges, and projections onto any such charge give generic lower bounds for diffusion. In particular, bilinear expressions in linearly extensive charges lead to explicit diffusion lower bounds calculable from the thermodynamics, and applicable for instance to generic momentum-conserving one-dimensional systems. Bilinear charges are interpreted as covariant derivatives on the manifold of maximal entropy states, and represent the contribution to diffusion from scattering of ballistic waves. An analysis of fractionally extensive charges, combined with clustering properties from the superdiffusion phenomenology, gives lower bounds for superdiffusion exponents. These bounds reproduce the predictions of nonlinear fluctuating hydrodynamics, including the Kardar–Parisi–Zhang exponent 2/3 for sound-like modes, the Levy-distribution exponent 3/5 for heat-like modes, and the full Fibonacci sequence.

Funder

Royal Society

Engineering and Physical Sciences Research Council

Publisher

Springer Science and Business Media LLC

Subject

Mathematical Physics,Statistical and Nonlinear Physics

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3