Maximum of the Membrane Model on Regular Trees

Author:

Cipriani AlessandraORCID,Dan Biltu,Hazra Rajat Subhra,Ray Rounak

Abstract

AbstractThe discrete membrane model is a Gaussian random interface whose inverse covariance is given by the discrete biharmonic operator on a graph. In literature almost all works have considered the field as indexed over $${{\,\mathrm{{\mathbb {Z}}}\,}}^d$$ Z d , and this enabled one to study the model using methods from partial differential equations. In this article we would like to investigate the dependence of the membrane model on a different geometry, namely trees. The covariance is expressed via a random walk representation which was first determined by Vanderbei in (Ann Probab 12:311–314, 1984). We exploit this representation on m-regular trees and show that the infinite volume limit on the infinite tree exists when $$m\ge 3$$ m 3 . Further we determine the behavior of the maximum under the infinite and finite volume measures.

Funder

Horizon 2020 Framework Programme

Nederlandse Organisatie voor Wetenschappelijk Onderzoek

Department of Science and Technology, Ministry of Science and Technology

NETWORKS

Publisher

Springer Science and Business Media LLC

Subject

Mathematical Physics,Statistical and Nonlinear Physics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3