Higher Order Corrections to the Mean-Field Description of the Dynamics of Interacting Bosons

Author:

Boßmann LeaORCID,Pavlović Nataša,Pickl Peter,Soffer Avy

Abstract

AbstractIn this paper, we introduce a novel method for deriving higher order corrections to the mean-field description of the dynamics of interacting bosons. More precisely, we consider the dynamics of N$$d$$d-dimensional bosons for large N. The bosons initially form a Bose–Einstein condensate and interact with each other via a pair potential of the form $$(N-1)^{-1}N^{d\beta }v(N^\beta \cdot )$$(N-1)-1Ndβv(Nβ·) for $$\beta \in [0,\frac{1}{4d})$$β[0,14d). We derive a sequence of N-body functions which approximate the true many-body dynamics in $$L^2({\mathbb {R}}^{dN})$$L2(RdN)-norm to arbitrary precision in powers of $$N^{-1}$$N-1. The approximating functions are constructed as Duhamel expansions of finite order in terms of the first quantised analogue of a Bogoliubov time evolution.

Funder

Deutsche Forschungsgemeinschaft

National Science Foundation

H2020 Marie Sk?odowska-Curie Actions

Publisher

Springer Science and Business Media LLC

Subject

Mathematical Physics,Statistical and Nonlinear Physics

Reference58 articles.

1. Adami, R., Bardos, C., Golse, F., Teta, A.: Towards a rigorous derivation of the cubic NLSE in dimension one. Asymptot. Anal. 40(2), 93–108 (2004)

2. Adami, R., Golse, F., Teta, A.: Rigorous derivation of the cubic NLS in dimension one. J. Stat. Phys. 127(6), 1193–1220 (2007)

3. Adams, R .A., Fournier, J .J .F.: Sobolev Spaces. Pure and Applied Mathematics Series, vol. 140. Academic Press, Elsevier (2003)

4. Anapolitanos, I., Hott, M.: A simple proof of convergence to the Hartree dynamics in Sobolev trace norms. J. Math. Phys. 57(12), 122108 (2016)

5. Ben Arous, G., Kirkpatrick, K., Schlein, B.: A central limit theorem in many-body quantum dynamics. Commun. Math. Phys. 321, 371–417 (2013)

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3