Abstract
AbstractIn this paper, we introduce a novel method for deriving higher order corrections to the mean-field description of the dynamics of interacting bosons. More precisely, we consider the dynamics of N$$d$$d-dimensional bosons for large N. The bosons initially form a Bose–Einstein condensate and interact with each other via a pair potential of the form $$(N-1)^{-1}N^{d\beta }v(N^\beta \cdot )$$(N-1)-1Ndβv(Nβ·) for $$\beta \in [0,\frac{1}{4d})$$β∈[0,14d). We derive a sequence of N-body functions which approximate the true many-body dynamics in $$L^2({\mathbb {R}}^{dN})$$L2(RdN)-norm to arbitrary precision in powers of $$N^{-1}$$N-1. The approximating functions are constructed as Duhamel expansions of finite order in terms of the first quantised analogue of a Bogoliubov time evolution.
Funder
Deutsche Forschungsgemeinschaft
National Science Foundation
H2020 Marie Sk?odowska-Curie Actions
Publisher
Springer Science and Business Media LLC
Subject
Mathematical Physics,Statistical and Nonlinear Physics
Reference58 articles.
1. Adami, R., Bardos, C., Golse, F., Teta, A.: Towards a rigorous derivation of the cubic NLSE in dimension one. Asymptot. Anal. 40(2), 93–108 (2004)
2. Adami, R., Golse, F., Teta, A.: Rigorous derivation of the cubic NLS in dimension one. J. Stat. Phys. 127(6), 1193–1220 (2007)
3. Adams, R .A., Fournier, J .J .F.: Sobolev Spaces. Pure and Applied Mathematics Series, vol. 140. Academic Press, Elsevier (2003)
4. Anapolitanos, I., Hott, M.: A simple proof of convergence to the Hartree dynamics in Sobolev trace norms. J. Math. Phys. 57(12), 122108 (2016)
5. Ben Arous, G., Kirkpatrick, K., Schlein, B.: A central limit theorem in many-body quantum dynamics. Commun. Math. Phys. 321, 371–417 (2013)
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献