Author:
Gantert Nina,Klenke Achim
Abstract
AbstractConsider a random walk with a drift to the right on$$\{0,\ldots ,k\}$${0,…,k}wherekis random and geometrically distributed. We show that the tail$${\mathbb {P}}[T>t]$$P[T>t]of the lengthTof an excursion from 0 decreases up to constants like$$t^{-\varrho }$$t-ϱfor some$$\varrho >0$$ϱ>0but is not regularly varying. We compute the oscillations of$$t^\varrho \,{\mathbb {P}}[T>t]$$tϱP[T>t]as$$t\rightarrow \infty $$t→∞explicitly.
Funder
Technische Universität München
Publisher
Springer Science and Business Media LLC
Subject
Mathematical Physics,Statistical and Nonlinear Physics
Reference23 articles.
1. Afanasyev, V.I.: On the maximum of a subcritical branching process in a random environment. Stoch. Process. Appl. 93(1), 87–107 (2001)
2. Axelson-Fisk, M., Häggström, O.: Conditional percolation on one-dimensional lattices. Adv. Appl. Probab. 41(4), 1102–1122 (2009)
3. Barma, M., Dhar, D.: Directed diffusion in a percolation network. J. Phys. C 16(8), 1451 (1983)
4. Ben Arous, G., Fribergh, A.: Biased random walks on random graphs. In: Probability and Statistical Physics in St. Petersburg, Proc. Sympos. Pure Math., vol. 91, pp. 99–153. Amer. Math. Soc., Providence (2016)
5. Ben Arous, G., Fribergh, A., Gantert, N., Hammond, A.: Biased random walks on Galton-Watson trees with leaves. Ann. Probab. 40(1), 280–338 (2012)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献