1. Archimedes (1967). Werke (2. Aufl.). Darmstadt: Wissenschaftliche Buchgesellschaft. Übersetzt und mit Anmerkungen versehen von A. Czwalina
2. Arzarello, F. (2007). The proof in the 20th century: from Hilbert to automatic theorem proving. In P. Boero (Hrsg.), Theorems in school: from history, epistemology and cognition to classroom practice (S. 43–64). Rotterdam: Sense publisher.
3. Bartolini Bussi, M. G., Boero, P., Ferri, F., Garuti, R., & Alessandra, M. M. (2007). Approaching and developing the culture of geometry theorems in school: a theoretical framework. In P. Boero (Hrsg.), Theorems in school: from history, epistemology and cognition to classroom practice (S. 211–217). Rotterdam: Sense publisher.
4. Blum, W., & Leiß, D. (2007). How do students and teachers deal with modelling problems? In C. Haines, W. Blum, P. Galbraith & S. Khan (Hrsg.), Mathematical modelling (ICTMA 12): Education, engineering and economics (S. 222–231). Chichester: Horwood.
5. Boero, P., Garuti, R., & Lemut, E. (2007). Approaching Theorems in grade VIII: some mental processes underlying producing and proving conjectures and condition suitable to enhance them. In P. Boero (Hrsg.), Theorems in school: from history, epistemology and cognition to classroom practice (S. 249–264). Rotterdam: Sense Publisher.