Hardware-Aware Evolutionary Explainable Filter Pruning for Convolutional Neural Networks

Author:

Heidorn Christian,Sabih MuhammadORCID,Meyerhöfer Nicolai,Schinabeck ChristianORCID,Teich JürgenORCID,Hannig FrankORCID

Abstract

AbstractFilter pruning of convolutional neural networks (CNNs) is a common technique to effectively reduce the memory footprint, the number of arithmetic operations, and, consequently, inference time. Recent pruning approaches also consider the targeted device (i.e., graphics processing units) for CNN deployment to reduce the actual inference time. However, simple metrics, such as the $$\ell ^1$$ 1 -norm, are used for deciding which filters to prune. In this work, we propose a hardware-aware technique to explore the vast multi-objective design space of possible filter pruning configurations. Our approach incorporates not only the targeted device but also techniques from explainable artificial intelligence for ranking and deciding which filters to prune. For each layer, the number of filters to be pruned is optimized with the objective of minimizing the inference time and the error rate of the CNN. Experimental results show that our approach can speed up inference time by 1.40× and 1.30× for VGG-16 on the CIFAR-10 dataset and ResNet-18 on the ILSVRC-2012 dataset, respectively, compared to the state-of-the-art ABCPruner.

Funder

Bundesministerium für Bildung und Forschung

Friedrich-Alexander-Universität Erlangen-Nürnberg

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3