Portable Node-Level Parallelism for the PGAS Model

Author:

Jungblut PascalORCID,Fürlinger Karl

Abstract

AbstractThe Partitioned Global Address Space (PGAS) programming model brings intuitive shared memory semantics to distributed memory systems. Even with an abstract and unifying virtual global address space it is, however, challenging to use the full potential of different systems. Without explicit support by the implementation node-local operations have to be optimized manually for each architecture. A goal of this work is to offer a user-friendly programming model that provides portable performance across systems. In this paper we present an approach to integrate node-level programming abstractions with the PGAS programming model. We describe the hierarchical data distribution with local patterns and our implementation, MEPHISTO, in C++ using two existing projects. The evaluation of MEPHISTO shows that our approach achieves portable performance while requiring only minimal changes to port it from a CPU-based system to a GPU-based one using a CUDA or HIP back-end.

Funder

Deutsche Forschungsgemeinschaft

Ludwig-Maximilians-Universität München

Publisher

Springer Science and Business Media LLC

Subject

Information Systems,Theoretical Computer Science,Software

Reference20 articles.

1. Agullo, E., Aumage, O., Faverge, M., Furmento, N., Pruvost, F., Sergent, M., Thibault, S.: Harnessing clusters of hybrid nodes with a sequential task-based programming model. In: International Workshop on Parallel Matrix Algorithms and Applications (PMAA 2014), Lugano, Switzerland (July 2014)

2. Bell, N., Hoberock, J.: Chapter 26—Thrust: a productivity-oriented library for CUDA. In: Hwu, W., Mei, W. (eds.) GPU Computing Gems Jade Edition, Applications of GPU Computing Series, pp. 359–371. Morgan Kaufmann, Boston (2012)

3. Chamberlain, B.L., Callahan, D., Zima, H.P.: Parallel programmability and the Chapel language. Int. J. High Perform. Comput. Appl. 21(3), 291–312 (2007)

4. Charles, P., Grothoff, C., Saraswat, V., Donawa, C., Kielstra, A., Ebcioglu, K., Von Praun, C., Sarkar, V.: X10: an object-oriented approach to non-uniform cluster computing. ACM Sigplan Not. 40(10), 519–538 (2005)

5. Crozier, P., Plimpton, S.: miniMD v. 1.0. Technical report, Sandia National Laboratories (2009)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3