iDocChip: A Configurable Hardware Architecture for Historical Document Image Processing

Author:

Tekleyohannes Menbere Kina,Rybalkin Vladimir,Ghaffar Muhammad Mohsin,Varela Javier Alejandro,Wehn Norbert,Dengel Andreas

Abstract

AbstractIn recent years, $$\hbox {optical character recognition (OCR)}$$ optical character recognition (OCR) systems have been used to digitally preserve historical archives. To transcribe historical archives into a machine-readable form, first, the documents are scanned, then an $$\hbox {OCR}$$ OCR is applied. In order to digitize documents without the need to remove them from where they are archived, it is valuable to have a portable device that combines scanning and $$\hbox {OCR}$$ OCR capabilities. Nowadays, there exist many commercial and open-source document digitization techniques, which are optimized for contemporary documents. However, they fail to give sufficient text recognition accuracy for transcribing historical documents due to the severe quality degradation of such documents. On the contrary, the anyOCR system, which is designed to mainly digitize historical documents, provides high accuracy. However, this comes at a cost of high computational complexity resulting in long runtime and high power consumption. To tackle these challenges, we propose a low power energy-efficient accelerator with real-time capabilities called iDocChip, which is a configurable hybrid hardware-software programmable $$\hbox {System-on-Chip (SoC)}$$ System-on-Chip (SoC) based on anyOCR for digitizing historical documents. In this paper, we focus on one of the most crucial processing steps in the anyOCR system: Text and Image Segmentation, which makes use of a multi-resolution morphology-based algorithm. Moreover, an optimized $$\hbox {FPGA}$$ FPGA -based hybrid architecture of this anyOCR step along with its optimized software implementations are presented. We demonstrate our results on multiple embedded and general-purpose platforms with respect to runtime and power consumption. The resulting hardware accelerator outperforms the existing anyOCR by 6.2$$\times$$ × , while achieving 207$$\times$$ × higher energy-efficiency and maintaining its high accuracy.

Funder

Projekt DEAL

Publisher

Springer Science and Business Media LLC

Subject

Information Systems,Theoretical Computer Science,Software

Reference45 articles.

1. ABBYY. https://www.abbyy.com/en-eu/. Accessed 24 Apr 2020

2. Omnipage. https://www.kofax.com/Products/omnipage?source=nuance. Accessed 24 Apr 2020

3. OCRopus. https://github.com/tmbarchive/ocropy. Accessed: 2020-04-24

4. Tesseract. https://github.com/tesseract-ocr. Accessed 24 Apr 2020

5. Bukhari, S. S., Kadi, A, Jouneh, M. A., Mir, F. M., Dengel, A: anyocr: An open-source ocr system for historical archives. In: 2017 14th IAPR international conference on document analysis and recognition (ICDAR), vol. 1 , pp. 305–310. IEEE, (2017)

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3