PIMP My Many-Core: Pipeline-Integrated Message Passing

Author:

Mische JörgORCID,Frieb Martin,Stegmeier Alexander,Ungerer Theo

Abstract

Abstract To improve the scalability, several many-core architectures use message passing instead of shared memory accesses for communication. Unfortunately, Direct Memory Access (DMA) transfers in a shared address space are usually used to emulate message passing, which entails a lot of overhead and thwarts the advantages of message passing. Recently proposed register-level message passing alternatives use special instructions to send the contents of a single register to another core. The reduced communication overhead and architectural simplicity lead to good many-core scalability. After investigating several other approaches in terms of hardware complexity and throughput overhead, we recommend a small instruction set extension to enable register-level message passing at minimal hardware costs and describe its integration into a classical five stage RISC-V pipeline.

Funder

Universität Augsburg

Publisher

Springer Science and Business Media LLC

Subject

Information Systems,Theoretical Computer Science,Software

Reference25 articles.

1. Bailey, D.H., et al.: The NAS parallel benchmarks. Int. J. High Perform. Comput. Appl. 5(3), 63–73 (1991)

2. Bell, S., et al.: Tile64-processor: a 64-core soc with mesh interconnect. In: International Solid-State Circuits Conference (ISSC), pp. 588–598 (2008)

3. de Dinechin, B.D., de Massas, P.G., Lager, G., Léger, C., Orgogozo, B., Reybert, J., Strudel, T.: A distributed run-time environment for the Kalray MPPA-256 integrated manycore processor. Procedia Comput. Sci. 18, 1654–1663 (2013)

4. Duller, A., Towner, D., Panesar, G., Gray, A., Robbins, W.: Picoarray technology: the tool’s story. In: Design, Automation and Test in Europe (DATE), pp. 106–111 (2005)

5. Frieb, M.: Hardware Extensions for a Timing-Predictable Many-Core Processor. Ph.D. thesis, Department of Computer Science, University of Augsburg (2019)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3