Distributed Calculations with Algorithmic Skeletons for Heterogeneous Computing Environments

Author:

Herrmann Nina,Kuchen Herbert

Abstract

AbstractContemporary HPC hardware typically provides several levels of parallelism, e.g. multiple nodes, each having multiple cores (possibly with vectorization) and accelerators. Efficiently programming such systems usually requires skills in combining several low-level frameworks such as MPI, OpenMP, and CUDA. This overburdens programmers without substantial parallel programming skills. One way to overcome this problem and to abstract from details of parallel programming is to use algorithmic skeletons. In the present paper, we evaluate the multi-node, multi-CPU and multi-GPU implementation of the most essential skeletons Map, Reduce, and Zip. Our main contribution is a discussion of the efficiency of using multiple parallelization levels and the consideration of which fine-tune settings should be offered to the user.

Funder

Westfälische Wilhelms-Universität Münster

Publisher

Springer Science and Business Media LLC

Subject

Information Systems,Theoretical Computer Science,Software

Reference16 articles.

1. MPI Forum. Mpi standard. https://www.mpi-forum.org/docs/ (2021). Accessed: 10.05.2021

2. OpenMP. Openmp the openmp api specification for parallel programming. https://www.openmp.org/ (2021). Accessed: 10.05.2021

3. NVIDIA Corporation. Cuda. https://developer.nvidia.com/cuda-zone (2021). Accessed: 10.05.2021

4. Cole, M.I.: Algorithmic skeletons: structured management of parallel computation. Pitman, London (1989)

5. Ernsting, S., Kuchen, H.: Algorithmic skeletons for multi-core, multi-gpu systems and clusters. Int. J. High Perform. Comput. Netw. 7(2), 129–138 (2012)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3