Applying ubiquitous sensing to estimate perceived exertion based on cardiorespiratory features

Author:

de Almeida e Bueno Leonardo,Kwong Man Ting,Milnthorpe William R. F.,Cheng Runbei,Bergmann Jeroen H. M.ORCID

Abstract

AbstractReliable monitoring of one’s response to exercise intensity is imperative to effectively plan and manage training, but not always practical in impact sports settings. This study aimed to evaluate if an inexpensive mobile cardio-respiratory monitoring system can achieve similar performance to a metabolic cart in estimating rated perceived exertion. Eight adult men volunteered to perform treadmill tests under different conditions. Cardiorespiratory data were collected using a metabolic cart and an instrumented oral-cavity device, as well as their ratings of perceived exertion. Pearson correlation corrected for repeated measurements and stepwise regression analysis were used to observe the relationship between the cardiorespiratory features and the ratings of perceived exertion and determine the proportion of the variance of exertion that could be explained by the measurements. Minute ventilation was found to be the most associated variable to perceived exertion, closely followed by a novel metric called the audio minute volume, which can be collected by the oral-cavity device. A generalised linear model combining minute ventilation, audio minute volume, heart rate and respiration rate accounted for 64% of the variance in perceived exertion, whilst a model with only audio minute volume accounted for 56%. Our study indicates that minute ventilation is key to estimating perceived exertion during indoor running exercises. Audio minute volume was also observed to perform comparably to a lab-based metabolic cart in estimating perceived exertion. This research indicates that mobile techniques offer the potential for real-world data collection of an athlete’s physiological load and estimation of perceived exertion.

Funder

Engineering and Physical Sciences Research Council

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,Physical Therapy, Sports Therapy and Rehabilitation,Orthopedics and Sports Medicine,Modeling and Simulation,Biomedical Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3