Validation of a LiDAR-based player tracking system during football-specific tasks

Author:

Bampouras Theodoros M.ORCID,Thomas Neil M.ORCID

Abstract

AbstractTracking players’ movements in sports is important to monitor and optimise exercise volume, avoid injuries, and enhance game performance. A new LiDAR-based system (Sportlight®) purports to provide accurate velocity and acceleration metrics derived from player movements. This study examined the validity of the LiDAR-based system against a 3D motion analysis system. Two competitive football players (age: 18 years, height: 1.74 ± 0.01 m, mass: 66.5 ± 7.8 kg; playing experience at this level: 3 years) completed nine trials each of six sport-specific movements, consisting of straight-line sprints, cuts, and curved runs. Trials were recorded concurrently by a four-unit LiDAR system and a 64-camera 3D motion analysis system. Instantaneous velocity and acceleration, and time spent within key performance indicator bands (defined by velocity and acceleration thresholds) were compared between systems. Agreement between the systems was evaluated by root mean square error. Differences in time spent within each key performance indicator band between systems were assessed with t tests and standardised effect sizes. Velocity root mean square error values ranged from 0.04 to 0.14 m·s−1 across all movements and acceleration root mean square error values ranged from 0.16 to 0.7 m·s−2. Differences between systems for time spent within each key performance indicator band were mostly trivial. These results show that the LiDAR-based system can provide valid measures of velocity and acceleration in football-specific tasks, thus providing accurate tracking of players and calculation of relevant key performance indicators.

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,Physical Therapy, Sports Therapy and Rehabilitation,Orthopedics and Sports Medicine,Modeling and Simulation,Biomedical Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3