A mathematical model-based approach to optimize loading schemes of isometric resistance training sessions

Author:

Herold Johannes L.ORCID,Sommer Andreas

Abstract

AbstractIndividualized resistance training is necessary to optimize training results. A model-based optimization of loading schemes could provide valuable impulses for practitioners and complement the predominant manual program design by customizing the loading schemes to the trainee and the training goals. We compile a literature overview of model-based approaches used to simulate or optimize the response to single resistance training sessions or to long-term resistance training plans in terms of strength, power, muscle mass, or local muscular endurance by varying the loading scheme. To the best of our knowledge, contributions employing a predictive model to algorithmically optimize loading schemes for different training goals are nonexistent in the literature. Thus, we propose to set up optimal control problems as follows. For the underlying dynamics, we use a phenomenological model of the time course of maximum voluntary isometric contraction force. Then, we provide mathematical formulations of key performance indicators for loading schemes identified in sport science and use those as objective functionals or constraints. We then solve those optimal control problems using previously obtained parameter estimates for the elbow flexors. We discuss our choice of training goals, analyze the structure of the computed solutions, and give evidence of their real-life feasibility. The proposed optimization methodology is independent from the underlying model and can be transferred to more elaborate physiological models once suitable ones become available.

Funder

Ruprecht-Karls-Universität Heidelberg

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,Physical Therapy, Sports Therapy and Rehabilitation,Orthopedics and Sports Medicine,Modeling and Simulation,Biomedical Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3