Abstract
AbstractIn cross-country skiing, velocities range from 2 m $${\textrm{s}}^{-1}$$
s
-
1
up to more than 20 m $${\textrm{s}}^{-1}$$
s
-
1
across undulating terrain, and aerodynamics can, therefore, make a large impact on performance. The aim of this study was to investigate the influence of skiing velocity on air drag for skating sub-techniques and downhill postures (tuck). Dynamic and static drag measurements for two athletes were performed in a wind tunnel in relevant velocity ranges for each sub-technique. The drag area decreased with velocity from 2 m $${\textrm{s}}^{-1}$$
s
-
1
to around 10–12 m $${\textrm{s}}^{-1}$$
s
-
1
, where it plateaued. No difference in air drag was found between the sub-techniques performed in upright postures (G2–G4) and thereby relatively similar frontal areas. In the G5 sub-technique performed without poling action in a lower posture, the reduced air drag was approximately 28% lower than for G2–G4 at similar velocities, and could even be reduced by an additional 21.7% by keeping the arms tucked in front of the body. In the downhill tucked postures, athletes could reduce air drag by 23% by keeping a low tuck, compared to a high tuck with straight legs. The sub-techniques were tested both dynamically and by averaging the static positions throughout the movements. The air drag was on average 6.1% lower for dynamic movements, indicating that dynamical movements like in cross-country skiing should be tested dynamically when evaluating air drag. Finally, the chosen cycle rate had minimal influence on air drag.
Funder
NTNU Norwegian University of Science and Technology
Publisher
Springer Science and Business Media LLC
Subject
Mechanical Engineering,Mechanics of Materials,Physical Therapy, Sports Therapy and Rehabilitation,Orthopedics and Sports Medicine,Modeling and Simulation,Biomedical Engineering
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献