Comparison of a computer vision system against three-dimensional motion capture for tracking football movements in a stadium environment

Author:

Aughey Robert J.ORCID,Ball KevinORCID,Robertson Sam J.ORCID,Duthie Grant M.ORCID,Serpiello Fabio R.ORCID,Evans NicolasORCID,Spencer Bartholomew,Ellens Susanne,Cust EmilyORCID,Haycraft JadeORCID,Billingham JohsanORCID

Abstract

AbstractThree-dimensional motion capture systems such as Vicon have been used to validate commercial electronic performance and tracking systems. However, three-dimensional motion capture cannot be used for large capture areas such as a full football pitch due to the need for many fragile cameras to be placed around the capture volume and a lack of suitable depth of field of those cameras. There is a need, therefore, for a hybrid testing solution for commercial electronic performance and tracking systems using highly precise three-dimensional motion capture in a small test area and a computer vision system in other areas to test for full-pitch coverage by the commercial systems. This study aimed to establish the validity of VisionKit computer vision system against three-dimensional motion capture in a stadium environment. Ten participants undertook a series of football-specific movement tasks, including a circuit, small-sided games and a 20 m sprint. There was strong agreement between VisionKit and three-dimensional motion capture across each activity undertaken. The root mean square difference for speed was 0.04 m·s−1 and for position was 0.18 m. VisionKit had strong agreement with the criterion three-dimensional motion capture system three-dimensional motion capture for football-related movements tested in stadium environments. VisionKit can thus be used to establish the concurrent validity of other electronic performance and tracking systems in circumstances where three-dimensional motion capture cannot be used.

Funder

Fédération Internationale de Football Association

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,Physical Therapy, Sports Therapy and Rehabilitation,Orthopedics and Sports Medicine,Modeling and Simulation,Biomedical Engineering

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3