Stranded investment associated with rapid energy system changes under the mid-century strategy in Japan

Author:

Oshiro KenORCID,Fujimori ShinichiroORCID

Abstract

AbstractJapan’s mid-century strategy to reduce greenhouse gas (GHG) emissions by 80% by 2050 requires rapid energy system changes, which may lead to stranded assets in fossil fuel-related infrastructure. Existing studies have shown that massive stranding of assets in the energy supply side is possible; few studies have involved economy-wide stranded asset analysis. In this study, we estimated stranded investments in both the energy supply and demand sectors in Japan in the context of near-term goals for 2030 and the mid-century strategy. To this end, multiple emission scenarios for Japan were assessed based on various emission reduction targets for 2030 and 2050. The results show that stranded investments in the energy supply sectors occur mainly in coal power plants without carbon capture and storage (CCS), especially in scenarios without enhanced near-term mitigation targets. Increases of stranded investment in demand sectors were observed primarily under stringent mitigation scenarios, which exceed the 80% reduction target. In particular, investment for oil and gas heating systems in the buildings sector may be stranded at levels up to $20 billion US between 2021 and 2050. We further simulated a scenario incorporating a subsidy for devices that do not use fossil fuels as a sector-specific policy; this reduced the amount of stranded investment in the buildings sector. We confirmed the benefit of enhancing near-term mitigation targets to avoid generating stranded investments. These findings support the importance of inclusive energy and climate policy design involving not only pricing of carbon emissions but also complementary cross-sector economy-wide policies.

Publisher

Springer Science and Business Media LLC

Subject

Management, Monitoring, Policy and Law,Nature and Landscape Conservation,Sociology and Political Science,Ecology,Geography, Planning and Development,Health(social science),Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3