Carbon, cash, cattle and the climate crisis

Author:

Bilotto FrancoORCID,Christie-Whitehead Karen Michelle,Malcolm Bill,Harrison Matthew TomORCID

Abstract

AbstractWhile society increasingly demands emissions abatement from the livestock sector, farmers are concurrently being forced to adapt to an existential climate crisis. Here, we examine how stacking together multiple systems adaptations impacts on the productivity, profitability and greenhouse gas (GHG) emissions of livestock production systems under future climates underpinned by more frequent extreme weather events. Without adaptation, we reveal that soil carbon sequestration (SCS) in 2050 declined by 45–133%, heralding dire ramifications for CO2 removal aspirations associated with SCS in nationally determined contributions. Across adaptation-mitigation bundles examined, mitigation afforded by SCS from deep-rooted legumes was lowest, followed by mitigation from status quo SCS and woody vegetation, and with the greatest mitigation afforded by adoption of enteric methane inhibitor vaccines. Our results (1) underline a compelling need for innovative, disruptive technologies that dissect the strong, positive coupling between productivity and GHG emissions, (2) enable maintenance or additional sequestration of carbon in vegetation and soils under the hotter and drier conditions expected in future, and (3) illustrate the importance of holistically assessing systems to account for pollution swapping, where mitigation of one type of GHG (e.g., enteric methane) can result in increased emissions of another (e.g., CO2). We conclude that transdisciplinary participatory modelling with stakeholders and appropriate bundling of multiple complementary adaptation-mitigation options can simultaneously benefit production, profit, net emissions and emissions intensity.

Funder

Meat and Livestock Australia

Tasmanian Institute of Agriculture

University of Tasmania

Publisher

Springer Science and Business Media LLC

Subject

Management, Monitoring, Policy and Law,Nature and Landscape Conservation,Sociology and Political Science,Ecology,Geography, Planning and Development,Health (social science),Global and Planetary Change

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3