Changing structures of summertime heatwaves over China during 1961–2017

Author:

An Ning,Zuo Zhiyan

Abstract

AbstractDespite the prevalence of artificial separation of daytime and nighttime hot extremes, they may actually co-occur or occur sequentially. Considering their potential lead-lag configuration, this study identified an entire heatwave period as consecutive days with either daytime or nighttime hot extremes and investigated the changes of the prevalence and sequence of daytime and nighttime hot extremes during heatwaves over China from 1961 to 2017. It was found that the majority (82%) of heatwaves were compound heatwaves that had both daytime and nighttime hot extremes exceeding the 90th percentile-based thresholds, while only 7% (11%) were purely daytime (nighttime) heatwaves that contained only daytime (nighttime) hot extremes. During the entire periods of compound heatwaves, daytime hot extremes usually occurred one day or a few days before nighttime hot extremes, which was in accordance with the daily variations in radiation and meteorological conditions, such as the increasing surface humidity and cloud cover, and decreasing solar radiation during the entire heatwave periods. From 1961 to 2017, compound heatwave numbers exhibited the sharpest increase with a statistically significant trend of 0.44 times decade−1, in contrast to an insignificant trend of 0.00 times decade−1 for purely daytime heatwaves and a significant trend of 0.09 times decade−1 for purely nighttime heatwaves. Within the compound heatwave periods, hot nights were starting earlier and ending later, and numbers of concurrent daytime-nighttime hot extremes increased significantly at 0.20 days decade−1. In particular, urban area were not only subject to increasingly more frequent and longer compound heatwaves, but also to more occurrences of concurrent daytime-nighttime hot extremes with more serious impact. This study provides instructions for researchers to customize and select appropriate heatwave indices.

Publisher

Springer Science and Business Media LLC

Subject

General Earth and Planetary Sciences

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3