Author:
Sävman Karin,Heyes Melvyn P.,Svedin Pernilla,Karlsson Anna
Abstract
Abstract
Activation of microglia/macrophages is important in neonatal hypoxic–ischemic (HI) brain injury. Based on experimental studies, we identified macrophage/microglia-derived mediators with potential neurotoxic effects after neonatal HI and examined them in cerebrospinal fluid (CSF) from newborn infants after birth asphyxia. Galectin-3 is a novel inflammatory mediator produced by microglia/macrophages. Galectin-3 is chemotactic for inflammatory cells and activates nicotinamide adenine dinucleotide phosphate (NADPH) oxidase resulting in production and release of reactive oxygen species (ROS). Matrix metalloproteinase-9 (MMP-9) is a tissue-degrading protease expressed by activated microglia in the immature brain after HI. Both galectin-3 and MMP-9 contribute to brain injury in animal models for neonatal HI. Quinolinic acid (QUIN) is a neurotoxic N-methyl-d-aspartate (NMDA) receptor agonist also produced by activated microglia/macrophages. Galectin-3 and MMP-9 were measured by ELISA and QUIN by mass spectrometry. Asphyxiated infants (n = 20) had higher levels of galectin-3 (mean (SEM) 2.64 (0.43) ng/mL) and QUIN (335.42 (58.9) nM) than controls (n = 15) (1.36 (0.46) ng/mL and 116.56 (16.46) nM, respectively), p < 0.05 and p < 0.01. Infants with septic infections (n = 10) did not differ from controls. Asphyxiated infants with abnormal outcome had higher levels of galectin-3 (3.96 (0.67) ng/mL) than those with normal outcome (1.76 (0.32) ng/mL), p = 0.02, and the difference remained significant in the clinically relevant group of infants with moderate encephalopathy. MMP-9 was detected in few infants with no difference between groups. The potentially neurotoxic macrophage/microglia-derived mediators galectin-3 and QUIN are increased in CSF after birth asphyxia and could serve as markers and may contribute to injury.
Publisher
Springer Science and Business Media LLC
Subject
Cardiology and Cardiovascular Medicine,Neurology (clinical),General Neuroscience
Cited by
42 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献