Abstract
AbstractAneurysmal subarachnoid hemorrhage (SAH) can cause severe neurological deficits and high mortality. Early brain edema following SAH contributes to the initiation of microcirculation impairment and may further lead to delayed ischemic neurologic deficit (DIND). This study aimed to investigate whether dental pulp stem cell conditioned medium (DPSC-CM) ameliorates SAH-induced microcirculation impairment and the underlying mechanisms. SAH was induced via intrathecal injection of fresh autologous blood in Wistar male adult rat. DPSC-CM or DPSC-CM + insulin growth factor-1 (IGF-1) antibody was randomly administered by intrathecal route 5 min after SAH induction. To evaluate the underlying mechanisms of DPSC-CM in the treatment of SAH, primary rat astrocyte and microglia co-cultures were challenged with hemolysate or SAH-patient CSF in the presence or absence of DPSC-CM. The results showed that in vivo, DPSC-CM treatment decreased the brain water content, improved microcirculation impairment and enhanced functional recovery at 24 h post-SAH. DPSC-CM treatment also alleviated the expressions of water channel protein aquaporin-4 (AQP4) and pro-inflammatory cytokines, and enhanced the expressions of anti-inflammatory factors in the cortical region. However, all the beneficial effects of DPSC-CM were abrogated after treatment with IGF-1 neutralizing antibody. The in vitro results further showed that DPSC-CM treatment reduced hemolysate/SAH-patient CSF-induced astrocyte swelling and promoted M2 microglia polarization, partially through IGF-1/AKT signaling. The data suggested that DPSC-CM significantly reduced brain edema and rescued microcirculation impairment with concomitant anti-inflammatory benefits after SAH, and may potentially be developed into a novel therapeutic strategy for SAH.
Funder
Ministry of Science and Technology, Taiwan
Publisher
Springer Science and Business Media LLC
Subject
Cardiology and Cardiovascular Medicine,Neurology (clinical),General Neuroscience
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献