Neutralizing RGMa with Elezanumab Promotes Cerebroprotection and Recovery in Rabbit Middle Cerebral Artery Occlusion

Author:

Jacobson Peer B.,Mothe Andrea,Levy Aharon,Krakovsky Michael,Hooker Bradley A.,Zhang Xiaomeng,Mollon Jennifer,Mordashova Yulia,Droescher Mathias,Weiss Sabine,Barghorn Stefan,Dreher Ingeborg,Awwad Khader,Nimmrich Volker,Huang Lili,Fung Emma,Buck Wayne R.,Pfleeger Kimberly,Ziemann Adam,Smith Elaine,Fox Gerard B.,Tator Charles H.,Gold Michael

Abstract

AbstractRepulsive guidance molecule A (RGMa) is an inhibitor of neuronal growth and survival which is upregulated in the damaged central nervous system following acute spinal cord injury (SCI), traumatic brain injury, acute ischemic stroke (AIS), and other neuropathological conditions. Neutralization of RGMa is neuroprotective and promotes neuroplasticity in several preclinical models of neurodegeneration and injury including multiple sclerosis, AIS, and SCI. Given the limitations of current treatments for AIS due to narrow time windows to intervention (TTI), and restrictive patient selection criteria, there is significant unmet need for therapeutic agents that enable tissue survival and repair following acute ischemic damage for a broader population of stroke patients. In this preclinical study, we evaluated whether elezanumab, a human anti-RGMa monoclonal antibody, could improve neuromotor function and modulate neuroinflammatory cell activation following AIS with delayed intervention times up to 24 h using a rabbit embolic permanent middle cerebral artery occlusion model (pMCAO). In two replicate 28-day pMCAO studies, weekly intravenous infusions of elezanumab, over a range of doses and TTIs of 6 and 24 h after stroke, significantly improved neuromotor function in both pMCAO studies when first administered 6 h after stroke. All elezanumab treatment groups, including the 24 h TTI group, had significantly less neuroinflammation as assessed by microglial and astrocyte activation. The novel mechanism of action and potential for expanding TTI in human AIS make elezanumab distinct from current acute reperfusion therapies, and support evaluation in clinical trials of acute CNS damage to determine optimal dose and TTI in humans. Graphical Abstract A: Ramified/resting astrocytes and microglia in a normal, uninjured rabbit brain. B: Rabbit pMCAO brain illustrating lesion on right side of brain (red), surrounded by penumbra (pink) during acute phase post stroke, with minimal injury to left brain hemisphere. Penumbra characterized by activated astrocytes and microglia (region in crosshair within circle), with upregulation of free and bound RGMa. C: Elezanumab binds to both free and bound RGMa, preventing full activation of astrocytes and microglia. D: Elezanumab is efficacious in rabbit pMCAO with a 4 × larger TTI window vs. tPA (6 vs. 1.5 h, respectively). In human AIS, tPA is approved for a TTI of 3-4.5 h. Elezanumab is currently being evaluated in a clinical Ph2 study of AIS to determine the optimal dose and TTI (NCT04309474).

Funder

AbbVie

Publisher

Springer Science and Business Media LLC

Subject

Cardiology and Cardiovascular Medicine,Neurology (clinical),General Neuroscience

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3