Author:
Basu Riddhipratim,Sly Allan
Publisher
Springer Science and Business Media LLC
Subject
Statistics, Probability and Uncertainty,Statistics and Probability,Analysis
Reference24 articles.
1. Abért, M.: Asymptotic group theory questions. Available at http://www.math.uchicago.edu/~abert/research/asymptotic.html (2008)
2. Balister, P.N., Bollobás, B., Stacey, A.M.: Dependent percolation in two dimensions. Probab. Theory Relat. Fields 117, 495–513 (2000)
3. Benjamini, I., Kesten, H.: Percolation of arbitrary words in $$\{0,1\}^{ N}$$ { 0 , 1 } N . Ann. Probab. 23(3), 1024–1060 (1995)
4. Coppersmith, D., Tetali, P., Winkler, P.: Collisions among random walks on a graph. SIAM J. Discrete Math. 6, 363 (1993)
5. de Lima, B.N.B., Sanchis, R., Silva, R.W.C.: Percolation of words on $$\mathbb{Z}^d$$ Z d with long-range connections. J. Appl. Probab. 48(4), 1152–1162 (2011)
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Dependent percolation on Z2;Brazilian Journal of Probability and Statistics;2023-06-01
2. Oriented percolation in a random environment;Electronic Journal of Probability;2022-01-01
3. Harry Kesten’s work in probability theory;Probability Theory and Related Fields;2021-08-25
4. Fractal Percolation and Quasisymmetric Mappings;International Mathematics Research Notices;2020-04-15
5. Scheduling of Non-Colliding Random Walks;Springer Proceedings in Mathematics & Statistics;2019