Abstract
AbstractWe show that there is no cyclically monotone stationary matching of two independent Poisson processes in dimension $$d=2$$
d
=
2
. The proof combines the harmonic approximation result from Goldman et al. (Commun. Pure Appl. Math. 74:2483–2560, 2021) with local asymptotics for the two-dimensional matching problem for which we give a new self-contained proof using martingale arguments.
Funder
Deutsche Forschungsgemeinschaft
Publisher
Springer Science and Business Media LLC
Subject
Statistics, Probability and Uncertainty,Statistics and Probability,Analysis
Reference26 articles.
1. Ajtai, M., Komlós, J., Tusnády, G.: On optimal matchings. Combinatorica 4, 259–264 (1984)
2. Ambrosio, L., Glaudo, F., Trevisan, D.: On the optimal map in the 2-dimensional random matching problem. Discrete Contin. Dyn. Syst. 39(12), 7291–7308 (2019)
3. Ambrosio, L., Stra, F., Trevisan, D.: A PDE approach to a 2-dimensional matching problem. Probab. Theory Relat. Fields 173(1–2), 433–477 (2019)
4. Benamou, J.-D., Brenier, Y.: A computational fluid mechanics solution to the Monge–kantorovich mass transfer problem. Numer. Math. 84(3), 375–393 (2000)
5. Bobkov, S.G., Ledoux, M.: A simple Fourier analytic proof of the AKT optimal matching theorem. Ann. Appl. Probab. (2019). https://api.semanticscholar.org/CorpusID:202573077
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献