The intransitive dice kernel: $$\frac{\mathbbm {1}_{x\ge y}-\mathbbm {1}_{x\le y}}{4} - \frac{3(x-y)(1+xy)}{8}$$

Author:

Sah Ashwin,Sawhney Mehtaab

Abstract

AbstractAnswering a pair of questions of Conrey, Gabbard, Grant, Liu, and Morrison, we prove that a triplet of dice drawn from the multiset model are intransitive with probability $$1/4+o(1)$$ 1 / 4 + o ( 1 ) and the probability a random pair of dice tie tends toward $$\alpha n^{-1}$$ α n - 1 for an explicitly defined constant $$\alpha $$ α . This extends and sharpens the recent results of Polymath regarding the balanced sequence model. We further show the distribution of larger tournaments converges to a universal tournamenton in both models. This limit naturally arises from the discrete spectrum of a certain skew-symmetric operator (given by the kernel in the title acting on $$L^2([-1,1])$$ L 2 ( [ - 1 , 1 ] ) ). The limit exhibits a degree of symmetry and can be used to prove that, for instance, the limiting probability that $$A_i$$ A i beats $$A_{i+1}$$ A i + 1 for $$1\le i\le 4$$ 1 i 4 and that $$A_5$$ A 5 beats $$A_1$$ A 1 is $$1/32+o(1)$$ 1 / 32 + o ( 1 ) . Furthermore, the limiting tournamenton has range contained in the discrete set $$\{0,1\}$$ { 0 , 1 } . This proves that the associated tournamenton is non-quasirandom in a dramatic fashion, vastly extending work of Cornacchia and Hązła regarding the continuous analogue of the balanced sequence model. The proof is based on a reduction to conditional central limit theorems (related to work of Polymath), the use of a “Poissonization” style method to reduce to computations with independent random variables, and the systematic use of switching-based arguments to extract cancellations in Fourier estimates when establishing local limit-type estimates.

Funder

Massachusetts Institute of Technology

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3