Author:
Bally Vlad,Caramellino Lucia,Poly Guillaume
Publisher
Springer Science and Business Media LLC
Subject
Statistics, Probability and Uncertainty,Statistics and Probability,Analysis
Reference18 articles.
1. Angst, J., Pham, V.H., Poly, G.: Universality of the nodal length of bivariate random trigonometric polynomials. Trans. Am. Math. Soc. (2018).
https://doi.org/10.1090/tran/7255
2. Azaïs, J.M., Dalmao, F., León, J.: CLT for the zeros of classical random trigonometric polynomials. Ann. Inst. Henri-Poincaré. 52(2), 804–820 (2016)
3. Azaïs, J.M., León, J.: CLT for crossings of random trigonometric polynomials. Electron. J. Probab. 18(68), 1–17 (2013).
https://doi.org/10.1214/EJP.v18-2403
4. Azaïs, J.M., Wschebor, M.: Level Sets and Extrema of Random Processes and Fields. Wiley, New York (2009)
5. Bally, V., Caramellino, L., Poly, G.: Convergence in distribution norms in the CLT for non identical distributed random variables. Electron. J. Probab. 23(45), 1–51 (2018)
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献