Strong posterior contraction rates via Wasserstein dynamics

Author:

Dolera Emanuele,Favaro Stefano,Mainini Edoardo

Abstract

AbstractIn Bayesian statistics, posterior contraction rates (PCRs) quantify the speed at which the posterior distribution concentrates on arbitrarily small neighborhoods of a true model, in a suitable way, as the sample size goes to infinity. In this paper, we develop a new approach to PCRs, with respect to strong norm distances on parameter spaces of functions. Critical to our approach is the combination of a local Lipschitz-continuity for the posterior distribution with a dynamic formulation of the Wasserstein distance, which allows to set forth an interesting connection between PCRs and some classical problems arising in mathematical analysis, probability and statistics, e.g., Laplace methods for approximating integrals, Sanov’s large deviation principles in the Wasserstein distance, rates of convergence of mean Glivenko–Cantelli theorems, and estimates of weighted Poincaré–Wirtinger constants. We first present a theorem on PCRs for a model in the regular infinite-dimensional exponential family, which exploits sufficient statistics of the model, and then extend such a theorem to a general dominated model. These results rely on the development of novel techniques to evaluate Laplace integrals and weighted Poincaré–Wirtinger constants in infinite-dimension, which are of independent interest. The proposed approach is applied to the regular parametric model, the multinomial model, the finite-dimensional and the infinite-dimensional logistic-Gaussian model and the infinite-dimensional linear regression. In general, our approach leads to optimal PCRs in finite-dimensional models, whereas for infinite-dimensional models it is shown explicitly how the prior distribution affect PCRs.

Funder

Università degli Studi di Pavia

Publisher

Springer Science and Business Media LLC

Reference89 articles.

1. Ajtai, M., Komlós, J., Tusnády, G.: On optimal matchings. Combinatorica 4, 259–264 (1984)

2. Albeverio, S., Steblovskaya, V.: Asymptotics of infinite-dimensional integrals with respect to smooth measures: infinite dimensional analysis. Quantum Probab. Rel. Top. 2, 529–556 (1999)

3. Albeverio, S., Steblovskaya, V.: Asymptotics of Gaussian integrals in infinite dimensions. Infin. Dimens. Anal. Quantum Probab. Relat. Top. 22, 1950004 (2019)

4. Lecture Notes in Mathematics;L Ambrosio,2013

5. Ambrosio, L., Gigli, N., Savaré, G.: Gradient Flows in Metric Spaces and in the Space of Probability Measures. Birkhäuser, Basel (2008)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3