Abstract
AbstractWe establish a quenched local central limit theorem for the dynamic random conductance model on $${\mathbb {Z}}^d$$
Z
d
only assuming ergodicity with respect to space-time shifts and a moment condition. As a key analytic ingredient we show Hölder continuity estimates for solutions to the heat equation for discrete finite difference operators in divergence form with time-dependent degenerate weights. The proof is based on De Giorgi’s iteration technique. In addition, we also derive a quenched local central limit theorem for the static random conductance model on a class of random graphs with degenerate ergodic weights.
Publisher
Springer Science and Business Media LLC
Subject
Statistics, Probability and Uncertainty,Statistics and Probability,Analysis
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献