Author:
Dabrock Nils,Hofmanová Martina,Röger Matthias
Abstract
AbstractWe are concerned with a stochastic mean curvature flow of graphs over a periodic domain of any space dimension. For the first time, we are able to construct martingale solutions which satisfy the equation pointwise and not only in a generalized (distributional or viscosity) sense. Moreover, we study their large-time behavior. Our analysis is based on a viscous approximation and new global bounds, namely, an $$L^{\infty }_{\omega ,x,t}$$
L
ω
,
x
,
t
∞
estimate for the gradient and an $$L^{2}_{\omega ,x,t}$$
L
ω
,
x
,
t
2
bound for the Hessian. The proof makes essential use of the delicate interplay between the deterministic mean curvature part and the stochastic perturbation, which permits to show that certain gradient-dependent energies are supermartingales. Our energy bounds in particular imply that solutions become asymptotically spatially homogeneous and approach a Brownian motion perturbed by a random constant.
Publisher
Springer Science and Business Media LLC
Subject
Statistics, Probability and Uncertainty,Statistics and Probability,Analysis
Reference55 articles.
1. Almgren, F., Taylor, J.E., Wang, L.: Curvature-driven flows: a variational approach. SIAM J. Control Optim. 31, 387–438 (1993)
2. Barles, G., Soner, H.M., Souganidis, P.E.: Front propagation and phase field theory. SIAM J. Control Optim. 31, 439–469 (1993)
3. Barles, G., Souganidis, P.E.: A new approach to front propagation problems: theory and applications. Arch. Ration. Mech. Anal. 141, 237–296 (1998)
4. Bellettini, G.: Lecture notes on mean curvature flow, barriers and singular perturbations, vol. 12 of Appunti. Scuola Normale Superiore di Pisa (Nuova Serie) [Lecture Notes. Scuola Normale Superiore di Pisa (New Series)], Edizioni della Normale, Pisa (2013)
5. Bellettini, G., Novaga, M.: Minimal barriers for geometric evolutions. J. Differ. Equ. 139, 76–103 (1997)
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献