Abstract
AbstractThis paper considers the effect of additive white noise on the normal form for the supercritical Hopf bifurcation in 2 dimensions. The main results involve the asymptotic behavior of the top Lyapunov exponent $$\lambda $$
λ
associated with this random dynamical system as one or more of the parameters in the system tend to 0 or $$\infty $$
∞
. This enables the construction of a bifurcation diagram in parameter space showing stable regions where $$\lambda <0$$
λ
<
0
(implying synchronization) and unstable regions where $$\lambda > 0$$
λ
>
0
(implying chaotic behavior). The value of $$\lambda $$
λ
depends strongly on the shearing effect of the twist factor b/a of the deterministic Hopf bifurcation. If b/a is sufficiently small then $$\lambda <0$$
λ
<
0
regardless of all the other parameters in the system. But when all the parameters except b are fixed then $$\lambda $$
λ
grows like a positive multiple of $$b^{2/3}$$
b
2
/
3
as $$b \rightarrow \infty $$
b
→
∞
.
Funder
University of Southern California
Publisher
Springer Science and Business Media LLC
Reference38 articles.
1. Ariaratnam, S.T., Xie, W.C.: Lyapunov exponent and rotation number of a two-dimensional nilpotent stochastic system. Dyn. Stab. Syst. 5(1), 1–9 (1990)
2. Arnold, L., Imkeller, P., Sri Namachchivaya, N.: The asymptotic stability of a noisy non-linear oscillator. J. Sound Vib. 269(3–5), 1003–1029 (2004)
3. Arnold, L., Oeljeklaus, E., Pardoux, É.: Almost sure and moment stability for linear Itô equations. In: Lyapunov Exponents (Bremen, 1984). Lecture Notes in Mathematics, vol. 1186, pp. 129–159. Springer, Berlin (1986)
4. Arnold, L.: Random Dynamical Systems. Springer Monographs in Mathematics. Springer, Berlin (1998)
5. Arnold, L., Papanicolaou, G., Wihstutz, V.: Asymptotic analysis of the Lyapunov exponent and rotation number of the random oscillator and applications. SIAM J. Appl. Math. 46(3), 427–450 (1986)