Free boundary dimers: random walk representation and scaling limit

Author:

Berestycki Nathanaël,Lis Marcin,Qian Wei

Abstract

AbstractWe study the dimer model on subgraphs of the square lattice in which vertices on a prescribed part of the boundary (the free boundary) are possibly unmatched. Each such unmatched vertex is called a monomer and contributes a fixed multiplicative weight $$z>0$$ z > 0 to the total weight of the configuration. A bijection described by Giuliani et al. (J Stat Phys 163(2):211–238, 2016) relates this model to a standard dimer model but on a non-bipartite graph. The Kasteleyn matrix of this dimer model describes a walk with transition weights that are negative along the free boundary. Yet under certain assumptions, which are in particular satisfied in the infinite volume limit in the upper half-plane, we prove an effective, true random walk representation for the inverse Kasteleyn matrix. In this case we further show that, independently of the value of $$z>0$$ z > 0 , the scaling limit of the centered height function is the Gaussian free field with Neumann (or free) boundary conditions. It is the first example of a discrete model where such boundary conditions arise in the continuum scaling limit.

Funder

Engineering and Physical Sciences Research Council

Austrian Science Fund

Publisher

Springer Science and Business Media LLC

Subject

Statistics, Probability and Uncertainty,Statistics and Probability,Analysis

Reference40 articles.

1. Aru, J., Sepúlveda, A., Werner, W.: On bounded-type thin local sets of the two-dimensional gaussian free field. J. Inst. Math. Jussieu 18(3), 591–618 (2019)

2. Bai, T., Wan, Y.: On the crossing estimates of simple conformal loop ensembles. Int. Math. Res. Notices, 2022, rnac173

3. Barlow, M. T.: Random walks and heat kernels on graphs, volume 438. Cambridge University Press, Cambridge (2017)

4. Basok, M., Chelkak, D.: Tau-functions à la dubédat and probabilities of cylindrical events for double-dimers and CLE(4). arXiv preprint arXiv:1809.00690, 2018

5. Berestycki, N., Laslier, B., Ray, G.: Dimers on Riemann surfaces, I: Termperleyan forests. arXiv (2019)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3