Abstract
AbstractWe consider systems of Brownian particles in the space of positive definite matrices, which evolve independently apart from some simple interactions. We give examples of such processes which have an integrable structure. These are related to K-Bessel functions of matrix argument and multivariate generalisations of these functions. The latter are eigenfunctions of a particular quantisation of the non-Abelian Toda lattice.
Publisher
Springer Science and Business Media LLC
Subject
Statistics, Probability and Uncertainty,Statistics and Probability,Analysis
Reference49 articles.
1. Assiotis, T., O’Connell, N., Warren, J.: Interlacing diffusions. In: Donati-Martin, C., Lejay, A., Rouault, A. (eds.) Séminaire de Probabilités L. Lecture Notes in Mathematics, vol. 2252. Springer, Cham (2019)
2. Baudoin, F.: Further exponential generalization of Pitman’s $$2M-X$$ theorem. Electron. Commun. Probab. 7, 37–46 (2002)
3. Baudoin, F., O’Connell, N.: Exponential functionals of Brownian motion and class-one Whittaker functions. Ann. Inst. H. Poincaré Probab. Stat. 47, 1096–1120 (2011)
4. Biane, P., Bougerol, P., O’Connell, N.: Littelmann paths and Brownian paths. Duke Math. J. 130, 127–167 (2005)
5. Borodin, A., Corwin, I.: Macdonald processes. Probab. Theory Relat. Fields 158, 225–400 (2014)
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献