Uniqueness of gradient Gibbs measures with disorder

Author:

Cotar Codina,Külske Christof

Abstract

AbstractWe consider—in a uniformly strictly convex potential regime—two versions of random gradient models with disorder. In model (A) the interface feels a bulk term of random fields while in model (B) the disorder enters through the potential acting on the gradients. We assume a general distribution on the disorder with uniformly-bounded finite second moments. It is well known that for gradient models without disorder there are no Gibbs measures in infinite volume in dimension $$d = 2$$ d = 2 , while there are shift-invariant gradient Gibbs measures describing an infinite-volume distribution for the gradients of the field, as was shown by Funaki and Spohn (Commun Math Phys 185:1–36, 1997). Van Enter and Külske proved in (Ann Appl Probab 18(1):109–119, 2008) that adding a disorder term as in model (A) prohibits the existence of such gradient Gibbs measures for general interaction potentials in $$d = 2$$ d = 2 . In Cotar and Külske (Ann Appl Probab 22(5):1650–1692, 2012) we proved the existence of shift-covariant random gradient Gibbs measures for model (A) when $$d\ge 3$$ d 3 , the disorder is i.i.d and has mean zero, and for model (B) when $$d\ge 1$$ d 1 and the disorder has a stationary distribution. In the present paper, we prove existence and uniqueness of shift-covariant random gradient Gibbs measures with a given expected tilt$$u\in {\mathbb R}^{d}$$ u R d and with the corresponding annealed measure being ergodic: for model (A) when $$d\ge 3$$ d 3 and the disordered random fields are i.i.d. and symmetrically-distributed, and for model (B) when $$d\ge 1$$ d 1 and for any stationary disorder-dependence structure. We also compute for both models for any gradient Gibbs measure constructed as in Cotar and Külske (Ann Appl Probab 22(5):1650–1692, 2012), when the disorder is i.i.d. and its distribution satisfies a Poincaré inequality assumption, the optimal decay of covariances with respect to the averaged-over-the-disorder gradient Gibbs measure.

Publisher

Springer Science and Business Media LLC

Subject

Statistics, Probability and Uncertainty,Statistics and Probability,Analysis

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3