1. Artigue, M., Assude, T., Grugeon, B., & Lenfant, A. (2001). Teaching and learning algebra: Approaching complexity through complementary perspectives. In H. Chick, K. Stacey, J. Vincent, & J. Vincent (Eds.), The future of the teaching and learning of algebra. Proceedings of the 12th ICMI study conference in Melbourne (vol. 1, pp. 21–32). University of Melbourne. http://hdl.handle.net/11343/35000. Accessed 21 June 2021.
2. Atkin, A. (2013). Peirce’s theory of signs. In E. N. Zalta (Ed.), The Stanford Encyclopedia of Philosophy. https://plato.stanford.edu/entries/peirce-semiotics/. Accessed 21 June 2021.
3. Arzarello, F., Bazzini, L., & Chiappini, G. (2001). A model for analysing algebraic processes of thinking. In R. Sutherland, T. Rojano, A. Bell, & R. Lins (Eds.), Perspectives on school algebra (pp. 61–81). Kluwer Academic Press. https://doi.org/10.1007/0-306-47223-6_4
4. Behr, M., Erlwanger, S., & Nichols, E. (1980). How children view the equals sign. Mathematics Teaching, 92(1), 13–15.
5. Bikner-Ahsbahs, A. (2015). Empirically grounded building of ideal types. A methodical principle of constructing theory in the interpretative research in mathematics education (Transl.). In A. Bikner-Ahsbahs, C. Knipping, & N. Presmeg (Eds.), Approaches to qualitative research in mathematics education (pp. 105–135). Springer. (Original work publ. 2003) https://doi.org/10.1007/978-94-017-9181-6_5