Improving Fructooligosaccharide Production via sacC Gene Deletion in Zymomonas mobilis: A Novel Approach for Enhanced Prebiotic Production

Author:

Braga AdelaideORCID,Maia Ana Benedita,Gomes DanielaORCID,Rodrigues Joana L.ORCID,Rainha JoãoORCID,Rodrigues Lígia R.ORCID

Abstract

AbstracFructooligosaccharides (FOS) are promising prebiotics in the relevant and increasing market of functional food. Industrially, these compounds are produced from sucrose by the action of fructosyltransferase or b-fructofuranosidase enzymes. However, this process often yields low conversion rates and results in impure mixtures due to the release of high levels of glucose. Zymomonas mobilis is a well-known ethanol-producing bacterium with native levansucrase enzymes able to convert sucrose into FOS. This study aimed to use synthetic biology tools to eliminate invertase (sacC) activity in Z. mobilis, reducing substrate competition and maximizing FOS production. Additionally, we explored the potential use of agro-industrial by-products, such as sugarcane molasses (M) and corn step liquor (CSL), as nutrients for FOS production using Z. mobilis in an in vivo bioprocess strategy. Invertase deletion from the Z. mobilis ZM4 genome was accomplished by homologous recombination of an engineered suicide plasmid. Using Z. mobilis sacC, we observed a 70% reduction in monosaccharide production and a 9.0-fold increase in levan formation compared to the wild-type strain. Implementation of a fed-batch approach with CSL and molasses (CSLM) medium at flask-scale allowed to produce 41.9 g L−1 of FOS (0.25 gFOS gsucrose−1). To our knowledge, this work describes for the first time the production of FOS from agro-waste residues using a genetically modified Z. mobilis strain in a one-step fermentation. Through this innovative approach, we aim to contribute to the advancement of biotechnological strategies for prebiotic production, offering insights into genetic engineering techniques for improving the efficiency and sustainability of FOS synthesis in Z. mobilis.

Funder

Universidade do Minho

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3