Membrane-based Operations for the Fractionation of Polyphenols and Polysaccharides From Winery Sludges

Author:

Mejia Jaime A. Arboleda,Ricci AriannaORCID,Figueiredo Ana Sofia,Versari Andrea,Cassano Alfredo,de Pinho Maria Norberta,Parpinello Giuseppina Paola

Abstract

AbstractThe present work investigated the impact of ultrafiltration (UF) and nanofiltration (NF) membranes on the recovery and fractionation of polyphenolic compounds and polysaccharides from Sangiovese and Cabernet Sauvignon wine lees. A laboratory-made flat-sheet membrane in cellulose acetate (CA400-38) was used in the UF treatment of Sangiovese wine lees; three laboratory-made flat-sheet membranes in cellulose acetate (CA316, CA316-70, CA400-22) and a polyamide commercial membrane (NF90) were used in the NF treatment of Cabernet Sauvignon wine lees. All membranes were characterized in terms of hydraulic permeability and rejection toward references solutes; the performances of the membranes were measured in terms of productivity, fouling index, cleaning efficiency and retention toward target compounds.Experimental results indicated that all UF and NF membranes were effective in separating target compounds rejecting more than 92% of polysaccharides with polyphenols preferentially permeating through the membrane. The UF membrane rejected more than 40% of total polyphenols; rejections toward non-flavonoids and flavonoids were less than 25% and 12.5%, respectively.The laboratory-made NF membranes exhibited higher permeate flux values (of the order of 11–12 L/m2h) in comparison with the commercial NF membrane, despite the observed differences in the retention of specific solutes. Among the prepared membranes the CA316 showed a total rejection toward most part of non-flavonoids and flavonoids.The experimental results support the use of UF and NF processes in a sequential design to fractionate and refine phenolic compounds from winery sludge for the production of concentrated fractions with high antioxidant activities.

Publisher

Springer Science and Business Media LLC

Subject

Industrial and Manufacturing Engineering,Process Chemistry and Technology,Safety, Risk, Reliability and Quality,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3