Abstract
AbstractProcess impairing foam formation occurs regularly in batch distillation devices of the spirit industry. It negatively influences process and product quality. Up to now, such foam-related problems have not been in the focus of scientific investigations. This study aimed at preventing impairing foam formations by adapting the thermal energy input in fruit and grain mash distillations in larger scale batch distillations. The results showed that a reduction of the thermal energy input to 43 ± 1 W·L−1 during the initial heating of the mash leads to less flooding of the distillation apparatus and to a higher concentration of lower boiling compounds like methanol, acetaldehyde, and ethyl acetate as well as ethanol in the first fractions of the distillates. A standard process time and less energy consumption could be achieved by increasing the energy input again after prior reduction. However, this led to a reduction of the ethanol concentration in the distillate fractions of up to 4.3%vol, also most severe in the first fractions. A significant influence on analyzed volatile compounds in the distillate besides ethanol could not be detected. This is the first study that uses defined thermal energy input adaptations for foam management in larger scale distillation devices. The results lead the way to a more efficient distillation process with less foam formation.
Funder
Forschungskreis der Ernährungsindustrie
Universität Hohenheim
Publisher
Springer Science and Business Media LLC
Subject
Industrial and Manufacturing Engineering,Process Chemistry and Technology,Safety, Risk, Reliability and Quality,Food Science
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献