Scaling up the Two-Stage Countercurrent Extraction of Oil and Protein from Green Coffee Beans: Impact of Proteolysis on Extractability, Protein Functionality, and Oil Recovery

Author:

Almeida Flávia Souza,Dias Fernanda Furlan Gonçalves,Sato Ana Carla Kawazoe,De Moura Bell Juliana Maria Leite NobregaORCID

Abstract

AbstractGreen coffee processing has been hindered by low oil extraction yields from mechanical pressing and the need of using flammable and hazardous solvents for defatting the protein-rich cake before subsequent protein extraction. To replace the use of flammable solvents and enable the simultaneous extraction of lipids and proteins from green coffee beans at reduced water usage, a multistage countercurrent extraction process was scaled up from 0.05 to 1.14 kg and evaluated regarding protein and oil extractability, physicochemical and functional properties of the extracted protein, and oil recovery. Enzymatic extraction increased protein extractability by ~13% while achieving similar oil extractability when not using enzymes (55%). Proteolysis resulted in the release of smaller proteins with reduced surface hydrophobicity and higher solubility at acidic pH (3.0–5.0). The physicochemical changes observed due to proteolysis resulted in the formation of emulsions with reduced resistance against enzymatic and chemical demulsification strategies, enhancing the recovery of the extracted oil (48.6–51.0%). Proteolysis did not alter the high in vitro digestibility of green coffee proteins (up to 99%) or their emulsifying properties at most pH values evaluated. However, proteolysis did reduce the foaming properties of the hydrolysates compared with larger molecular weight proteins. These findings revealed the impact of extraction conditions on the extractability and structural modifications altering the functionality of green coffee proteins and the synergistic impact of extraction and demulsification strategies on the recovery of the extracted oil, paving the way for the development of structure–function processes to effectively produce green coffee proteins with desired functionality.

Funder

USDA National Institute of Food and Agriculture

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Fundação de Amparo à Pesquisa do Estado de São Paulo

Publisher

Springer Science and Business Media LLC

Subject

Industrial and Manufacturing Engineering,Process Chemistry and Technology,Safety, Risk, Reliability and Quality,Food Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3