Prediction of the Fatty Acid Profiles of Iberian Pig Products by Near Infrared Spectroscopy: A Comparison Between Multiple Regression Tools and Artificial Neural Networks

Author:

Hernández-Jiménez Miriam,Revilla Isabel,Hernández-Ramos Pedro,Vivar-Quintana Ana María

Abstract

AbstractIn this study, the feasibility of predicting the lipid profiles of Iberian ham and shoulder samples by using near infrared (NIR) spectroscopy was evaluated. Gas chromatography analysis was the reference method used. The muscles analyzed and recorded by NIR spectroscopy were 76 Biceps femoris for Iberian hams and 72 Brachiocephalicus for Iberian shoulders. NIR calibrations were carried out by using two methods: modified partial least squares regression (MPLS) and artificial neural networks (ANN). With the MPLS method, it was possible to obtain equations with regression’s coefficients (RSQ) of > 0.5 for 5 individual fatty acids and 3 summations: polyunsaturated fatty acids, n3 and n6. The use of neural networks made it possible to find equations with RSQ of > 0.5 for 10 individual fatty acids, all of which are present in over 90% of the samples, and 5 summations of saturated, monounsaturated, and polyunsaturated fatty acids (SFA, MUFA, PUFA), n3 and n6, finding that the calibration curves of the fatty acids C18:1, C18:2n6, and C18:3n3 presented RSQ’s of > 0.7. The results obtained indicate that NIR spectroscopy could be a very useful technology for the quality control of cured products as it allows estimating the main fatty constituents quickly and without using reagents.

Funder

Pre-doctoral Contracts of the University of Salamanca co-funded by Banco Santander

Universidad de Salamanca

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3