Predicting the Average Charring Rate of Mass Timber Using Data-Driven Methods for Structural Calculations

Author:

Amin Rikesh,Yaxin Mo,Richter Franz,Kurzer Christoph,Werther Norman,Rein GuillermoORCID

Abstract

AbstractEngineered timber is increasingly in demand for tall buildings due to its positive impact on building sustainability. However, quick adoption raises fire engineering questions regarding flammability and structural performance. Understanding the behaviour of timber in fire is crucial, particularly for structural calculations of tall buildings. The charring rate of timber plays a significant role in its structural performance because the loss of cross section reduces the load bearing capacity of the element. Eurocode-5 (EC5) provides a simple method to calculate the charring rate and it is widely adopted for design in many countries while more complex physics-based models exist but are rarely used for design. For example, we want to know when EC5 underpredicts or overpredicts and by how much. This paper compares different data-driven methods, including statistical and artificial intelligence algorithms, for predicting the average charring rate of timber in fire. A new database of charring rates, VAQT, was created comprised of 231 furnace tests of timber products found in the scientific and technical literature. Statistical methods such as ridge regression (λ = 0.001) predict the charring rate with a minimum 11% error whilst EC5 predicts with 27% error. A trained neural network predicts the charring rate with minimum 9% error. This paper presents a novel database of timber charring experiments and provides a set of data-driven predictive models, all of which calculate the average charring rate with a significantly higher accuracy than EC5 for a wide range of mass timber products.

Funder

Engineering and Physical Sciences Research Council

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3