Remote Sensing of the Light-Obscuring Smoke Properties in Real-Scale Fires Using a Photometric Measurement Method

Author:

Börger Kristian,Belt Alexander,Schultze Thorsten,Arnold LukasORCID

Abstract

AbstractA new photometric measurement method for the determination of temporally and spatially resolved light extinction coefficients in laboratory fire tests was recently presented. The approach relies on capturing the change in intensity of individual light sources (LEDs) due to fire smoke using a commercially available digital camera. Comparing the results for red light LEDs to measurements of the well-established MIREX system indicates the model is capable of capturing the investigated phenomena. However, a significant underestimation of this reference measurement taken in the infrared range is inconsistent with the expected increase of the extinction coefficients with lower wavelengths. In the context of new experimental investigations, this deficiency was remedied by evaluating multible colour channels of RAW image data instead of the previously used JPG files. Furthermore, extending the experimental setup by several LED strips as well as a second camera allows to verify the hypothesis of a homogeneous smoke layering. The study covers eight experiments including n-heptane fuel in style of the well documented EN 54 TF 5 testfire as well as two additional experiments with an n-heptane-toluene mixture. Considering spatial resolution as well as the high reproducibility of the results, the method appears to be a convenient tool for the validation of numerical visibility models. Nevertheless, a sensitivity analysis identified uncertainties that need to be addressed in upcoming investigations to further improve the accuracy.

Funder

Forschungszentrum Jülich GmbH

Publisher

Springer Science and Business Media LLC

Subject

Safety, Risk, Reliability and Quality,General Materials Science,Building and Construction

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3