Analysis of Fire Throttling in Longitudinally Ventilated Tunnels With a One-dimensional Model

Author:

Ang Chin DingORCID,Peiró Joaquim,Riess Ingo,Rein GuillermoORCID

Abstract

AbstractFire throttling is the increase in flow resistance due to a large fire in a longitudinally ventilated tunnel. Although the fire throttling effect has been been known and studied for tunnels over the last 40 years, there is not yet a consistent one-dimensional (1D) model that can describe this behaviour or a framework suitable for practical application. We propose a semi-empirical model, based upon pipe flow engineering principles, to describe this effect by separating the resistance to flow, or pressure loses in three parts: upstream of the fire, locally at the fire, and downstream of the fire. The proposed 1D model called TE1D is derived from a simple steady one-dimensional momentum balance in which a semi-empirical mean temperature distribution is assumed across the tunnel. We verify the model by comparing the pressures losses it predicts with those calculated in CFD simulations based on OpenFOAM and Fire Dynamics Simulator. The comparison shows good agreement between the CFD codes for the range of fires sizes considered from 5 to 50 MW and good agreement between TE1D and the CFD results with the proposed 1D model for fire sizes below 30 MW. However, for values above there are large discrepancies between the results obtained by the TE1D and CFD. We posit as a potential explanation that these differences are due to flow and temperature stratification which is not accounted for in the 1D model. The model using pipe flow principles allows engineers to adopt this model for design, together with other pressure losses considered in tunnel ventilation.

Publisher

Springer Science and Business Media LLC

Subject

Safety, Risk, Reliability and Quality,General Materials Science,Building and Construction

Reference35 articles.

1. International transport forum: transport infrastructure investment and maintenance (2017). https://doi.org/https://doi.org/10.1787/g2g55573-en. https://www.oecd-ilibrary.org/content/data/g2g55573-en

2. Hurley MJ (ed) SFPE Handbook of Fire Protection Engineering, fifth edn. Springer, Berlin (2016)

3. Ingason H, Li Y, Lönnermark A (2015) Tunnel fire dynamics. Springer

4. Greuer R (1973) Influence of mine fires on the ventilation of underground mines. Open file report 74-73, US Bureau of Mines . USBM Contract Report No SO122095

5. Hwang C, Chaiken R (1978) Effect of duct fire on the ventilation velocity. Report of Investigations 8311, US Bureau of Mines

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3