Abstract
AbstractThis gait biomechanics study investigated stride length (SL), stride duration (SDN), the peak values of ground reaction forces (GRFspeak), required coefficient of friction (RCOFpeak), leg joints’ angles (anglepeak), angular velocity (angvelx.peak), angular acceleration (angaccx.peak), minimum angle (anglemin.) of the foot, and muscles’ electromyography (EMG) during the stance phase (SP) of the dominant leg following an exhaustive stair ascent on a stair machine. Data were collected by a three-dimensional motion capture system synchronized with EMG and force plate while walking down a 10° inclined stationary walkway. Although the leg muscles’ EMG showed no significant local muscle fatigue (LMF) during post-exhaustive walking downwards, the SL was significantly (p < 0.05) shorter than the pre-exhaustive. The mean vertical GRFzpeak. was significantly (p ≤ .01) reduced during late stance (LS) phase, however, the antero-posterior GRFypeak. was found to be significantly (p ≤ 0.01) higher. The RCOFpeak. was significantly (p ≤ .05) higher during the post-exhaustive walking downwards, LS phase. The available coefficient of friction value of ~ 0.350 seems to be the RCOF to reduce slips and falls on an inclined dry surface. None of the post-exhaustive lower limb joints’ anglepeak, anglemin., ang.velx.peak, and ang.accx.peak were significantly changed in post-exhaustion walking, except the knee ang.accx.peak., which was significantly (p < 0.05) increased during the LS period. The constrained post-exhaustive gait biomechanics indicate a perturbed gait, which may increase the risks for slips and fall-related accidents, when walking downwards and working on slopes. However, the non-significant joint angle changes imply that walking down is less demanding in a kinesiological perspective compared to walking up an incline.
Publisher
Springer Science and Business Media LLC
Subject
Safety, Risk, Reliability and Quality,General Materials Science,Building and Construction
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献