Calculating Heat Release Rates from Lithium-Ion Battery Fires: A Methodology Using Digital Imaging

Author:

Wise Malcom S.,Christensen Paul A.,Dickman Neville,McDonald Joe,Mrozik Wojciech,Lambert Simon M.,Restuccia FrancescoORCID

Abstract

AbstractMeasuring flame lengths and areas from turbulent flame flares developing from lithium-ion battery failures is complex due to the varying directions of the flares, the thin flame zone, the spatially and temporally rapid changes of the thermal runaway event, as well as the hazardous nature of the event. This paper reports a novel methodology for measuring heat release rate from flame flares resulting from thermal runaway of electric vehicle lithium-ion modules comprising eight 56.3Ah lithium nickel manganese cobalt (NMC) pouch cells using digital cameras and a newly developed numerical code to process the distortion of the flame size based on distance, direction, and shape. The model is tested with a set of experiments using lithium-ion battery packs and validated with a reference set of measurements using calibration boxes, a method commonly used in the reconstruction of flame areas. The experiments showed that the effect of calibration is large, and thus digital imaging without the appropriate calibration can give very large errors in measurement of flames. The combined imaging and processing method proposed in this work allows the determination of heat release rates from lithium-ion battery packs, one of the most challenging variables to quantify during the failure of a battery pack outside the laboratory. In the example experiment that this method was applied to, almost double the heat released was accounted for, meaning 50% of the total heat released would not have been accounted for without this image processing method.

Funder

Engineering and Physical Sciences Research Council

Faraday Institution

Publisher

Springer Science and Business Media LLC

Subject

Safety, Risk, Reliability and Quality,General Materials Science,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3